OPERATORS AND OPERANDS

Fundamental Programming Elements

Delroy A. Brinkerhoff

Presenter
Presentation Notes
At the heart of every C++ statement, simple or complex, is a set of operators, symbols that instruct the computer to perform a single, simple task.

OPERATORS AND OPERANDS

Operators are symbols or words that denote some processing that takes place
on one, two, or three expressions

Operands are the expressions on which operators work; generally they can be
constants
variables
functions that return values

combinations of the above

Operators produce a new expression

Presenter
Presentation Notes
Most operators consist of just one or two characters but some operators consist of a complete word. Operands are the expressions or values on which an operator operates or works. Operands are often constants or variables, but function calls (that return a value) and sub-expressions are also permitted. The result of an operation is also an expression.

NUMBER OF OPERANDS

Operators can be characterized by the number of required operands
Unary: a single operand
Binary: two operands

Ternary: three operands

Examples:
-N new Person sizeof(int)
a+tbhb y * sqrt(2) x /2

(x<y)?!x:y

Presenter
Presentation Notes
Operators are characterized by the number of operands that they require. Most operators require one or two operands but C++ does have one operator that requires three.
Unary operators require or work on a single operand or expression. Binary operators require or work on two operands. The single Ternary operator takes three operands.

ORDER OF OPERATOR EVALUATION

When an expression contains multiple operators, two characteristics govern
the order in which the operators are evaluated

Precedence
Arbitrary but generally follows algebraic conventions
Built into the compiler

Associativity
Arbitrary but generally makes good sense

Built into the compiler

Presenter
Presentation Notes
All operators have two characteristics that affect the order in which they are evaluated: precedence and associativity. The rules that establish these characteristics are, to some extent, arbitrary, but they are based on similar properties from algebra and follow the best practices that have evolved over decades of programming language development. These rules are built into the compiler itself.
Operators with higher precedence are evaluated before operators with lower precedence. Associativity determines the direction (left or right) in which operators with the same precedence are evaluated.

PRECEDENCE

* /,and % all have the same precedence

+ and — have the same precedence, which is lower than the above
= has a very low precedence
a=4+2%*3

2 * 3 is evaluated first

4 + 6 is evaluated next

a = 10 is the last operation

Precedence can be overridden with parentheses

a=(4+2)*3

Presenter
Presentation Notes
There are only three levels of precedence that you need try to memorize at this time and they are the same as the precedence used in algebra: *, /, and % all have the same precedence; + and - both have the same precedence, which is lower than the first three; and the precedence of = is lower than the precedence of any of the arithmetic operators.
In this example, the compiler evaluates 2*3 first, then adds 4 to the result; finally, the result is stored in variable a.

ASSOCIATIVITY

Associativity is the direction of evaluation (left to right or right to left)
* 1, %, +,and — are all left associative (evaluated left to right)
= is right associative (evaluated right to left)
a=4+2+3
4 + 2 is evaluated first

6 + 3 is evaluated next

a = 9 is evaluated next

a=b =c=0;is evaluated as a = (b = (c = 0));

Presenter
Presentation Notes
Associativity determines the order of evaluation when two or more operators have the same precedence. The precedence of operators in the expression 4+2+3 is trivially the same since they are all the same operator. So which sub-expression, 4+2 or 2+3, is evaluated first? The addition operator, like all of the arithmetic operators, is left associative, which means that it is evaluated left to right. So the order of operation is 4+2, then 3 is added to the result.
The assignment operator is right associative. This fact is usually of no consequence to us because we generally only have one assignment operation in any statement. But it is possible to chain assignment operations together. This example shows a compact notation for assigning the same value to multiple variables in a single statement. 0 is stored in c, then in b, and finally in a.

PARTIAL OPERATOR LIST

() Grouping Right
! Logical negation / not Right
t, - Unary + and - Right
* /% Multiplication, division, modular Left
t, - Addition, subtraction Left
<, >, <=, >= Less/greater than, less/greater than or equal to Left
=7 = Equal to, not equal to Left
&& Logical AND Left
|| Logical OR Left

= Assignment Right

Presenter
Presentation Notes
This slide shows a partial list of operators and their precedence (highest at the top) and their associativity. A more complete list may be found in the text, but these operators are the most important. Each of these operators is treated identically in C++ and in Java.

	Operators and Operands
	Operators And Operands
	Number of Operands
	Order Of Operator Evaluation
	Precedence
	Associativity
	Partial Operator List

